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ON SOME SPECIAL LAWS OF NON-LINEAR FILTRATION* 

G.A. DOMBROVSKII 

New laws of the non-linear filtration of an incompressible fluid are 
proposed (including laws of filtration with a limiting gradient /l/) which 
enable one, when solving planar, stationary problems, to make use of the 
apparatus of the theory of functions of a complex variable. Some well- 
known special cases are considered. 

1. 
z=z+ig 
angle of 

The planar stationary filtration of an incompressible fluid is considered. Let 
be the plane of flow, u be the modulus of the filtration velocity vector, tl be the 
inclination of the filtration velocity vector to the r-axis, 0 be the stream func- 

tion, 'p = -H+ const, where H is the head, and let @((u) be a function which characterizes the 
filtration law /2/. By adopting v and I3 as the independent variables, we shall have a system 
of equations 

for the functions c~(u,0),tp(u,0) which can be obtained, for example, from the condition of the 
integrability of the right-hand side of the differential relationship 
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which reflects the meaning of the functions 4, and 9. 

If, a function L is introduced andthe independent variable 0, instead of v in accordance 
with the equalities 

then we arrive at the basic system in canonical form 

The relationships 

(I.‘) 

follow from equalities (1.1) which, in the case of a spherical function L(o),we shall consider 

as a system of ordinary differential equations for determining the functions l/S,(a) and l/u(u). 

2. Let us adopt the condition 

I, (0) = n* cth2 mo (m, II m- const) 

In this case the solution of the basic system, as is well-known /3/, can be represented 

in the form 

'F - RC (?I (mli - cth mnl:')) (2.1) 

I$ = Im (n-‘(mF - th moF')) 

where F is an arbitrary analytical function of the complex variable Z= O--0. A somewhat dif- 

ferent representation is also useful. This differs from (2.1) in the sign of the right-hand 

side of one of the relationships and in the replacement of the argument of the function F by 
0 = (r + 8 (0 = T). 

As a result of the solution of system (1.2), we have 

a)= 
B& 

A?’ (th mo - m) + (th rn(~ + m) 

Be'thmo 

" = n(As""(mth mo - I)+ (m thmo+ I)] 

where A and B are constants of integration. 

These functions parametrically define (the parameter is U) two families of laws of non- 

linear filtration which are of interest with the arbitrary constants m, n,A and B (the par- 

ameters of the families). We obtain the laws apertaining to one family when 0 is varied in 

the neighbourhood of 0=--m and the laws apertaining to the other family when (T is varied 

in the right neighbourhood of the point cr= 0. The curves depicting the laws apertaining to 

the first family in the MD plane emerge fromthe,origin of coordinates. The equalities u= 0, 
Q, = 0, dCD,ldu = n= are satisfied when G= --m. The laws apertaining to the second family are the 
laws of filtration with a limiting gradient. The equalities 

u = 0, Q, = Bn/[m (i - A)], dWdu = 0 

aresatisfiedwhen o=o. 
Success in solving non-linear filtration problems by the hodograph method is largely 

dependent on how simple it is to make the transition from the hodograph variables to the z 

and y variables of the physical flow plane. The following convenient transition formula, which 

corresponds to representation (2.1) of the solution of the basic system: 

z = - P, (0) e-TF’ (T) - P_ (0) eT’F’ (T) + 

mz-1 
B [S 

e-“F’ (r)& - A 
s 

eTF’ (T) dT 1 

is obtained from the differential relationship of paragraph 1. 

Hence, the determination of the coordinates of the physical flow plane is reduced to 
evaluating integrals of functions of the complex variable r. 

The transformation formula, which corresponds to the representation of the solution of 
the basic system in terms of the function F(o), has an analogous form. 
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Remark. If m is replaced by Im and n is replaced by in , we obtain formulae which corre- 
spond to the condition L(u)= nPctg'mo. It is then possible, in an obvious manner, to write 
down all the required formulae which correspond to the conditions L(o) = n'tgg ma, L ((I) = n' th2ms. 

3. We will now consider some special cases of the results presented in paragraph 2 and 
obtained from the condition L(o) = na cthamo. 

lo. Let us replace F by F/m and BbymB and make m tend to infinity. Inthe limit, we 
arrive at formulae which follow from the condition L= na= const. A method of solving non-linear 
filtration problems, which is, in essence, based on this condition, was proposed in /4/ (a 
varies in the neighbourhood o= -m). The case when L=const has also been considered in /5/, 
where a law of filtration, which is different from that adopted in /4/, was additionally 
indicated. 

2O. Let us replace n by mn and make m tend to zero. In the limit, we obtain all the 
formulae for the case when L(u)=n*/@. An investigation of the laws of filtration for this case 
has been carried out in /5/. 

3O. Let A=O,B=Am/n, ~?=a. When o>O, we shall have the well-known /6, 7/ family of 
filtration laws with a limiting gradient 

Q1 0 cm 

T= thzi+-m ’ h 
mea -= 

cthmo+m 
(3.1) 

Using these formulae, the dependence of Wli an aulh are depicted by the solid lines 
in the figure for several values of the parameter m. The case when m=l, which is,inparticu- 
lar, characterized by a simple transformation formula, was considered for the first time in 
/8/. The case when m= co is also characteristic. In the limit as m-m we arrive at the 

formulae for the method proposed in /9/. In order to obtain ex- 
pression for 'p and 1p, as a result of passing to the limit and the 
transformation formula, it is first necessary to replace F by Flm. 

40 . Let us put A =O, B = I&n, n"-im2= a. We obtain relationships, 
which differ from (3.1) in the replacement of the factor m by m-l 
in the second equality. The curves, calculated using these formulae 
for different m, are shown in the figure by the broken lines. When 
m= 0, we have the law 

which has been applied to the solution of some filtration problems 
0 0.5 f a@ with a limiting gradient in /lo-12/. The curve, which depicts this 

law, has a point of inflection with the coordinates a&= i/22, 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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WAVES IN A HALF-SPACE WITH 
FREQUENCY* 

Green's function is constructed 

in the half-space z>O with a 

which is linear with respect to 

1. Formulation of the problem. 

for the equation of the internal waves 

square of the Brunt-Vaisala frequency 

Z. 

The generalized solution I'(t,~~,~,a,,) 

equation 

with the initial and boundary conditions 

is considered in the half-space z>O. 

r = 0, aArIa = 6 (I) 6 (I/) 6 (2 - zo) (t = 0) 

r = 0 (2 = 0) 

of the 

(1.1) 

(i.2) 

(1.3) 

It is obvious that, when this function is extended to zero at t<o, it satisfies the 

equation 
Lr = 6 (t) 6 (4 6 cy) 6 cz - +j (1.4) 

that is, it is Green's function for the internal wave equation when the square ofthebuoyancy 
frequency Na (z) = 8%; B = con&. 

The approximate expression for r has the form /l/ (J, is a Bessel function and v is 

an Airy function) 

(1.5) 

C/ = u (ox’* (oz - 2)) v (IT”* (oa - I~)) sin Eotl, (am) (i.6) 

Since v(5) satisfies Airy's equation, it can be shown that the function U and, together 

with it, also G is an exact solution of Eq.(l.l). The approximate nature of the function G 

manifests itself in the fact that it does not satisfy the boundary condition (1.3) while the 

second condition in (1.2) is satisfied with an accuracy up to a smooth term Y: 

-&AGI 1* = a@)a(u)a(z -20) + Y(r, 2. 20) 

It is natural to assume that the exact Green's function also has the form of (1.5), (1.6) 

where, however, the product of the Airy functions should be replaced by any other combination 

of solutions of Airy's equation for the same arguments. The condition regarding the symmetry 

of r with respect to z,'z~, the boundary conditions (1.3) and, finally, the requirement that 
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